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We give the general solutions of lattices, i.e., velocity sets and weights, for the lattice Bhatanagar-Gross-
Krook �LBGK� models on two- and three-dimensional Cartesian grids. The solutions define the necessary and
sufficient conditions so that the resulting LBGK model can accurately capture the dynamics of the moments
retained in the distribution function. In the parameter space of the weights, the general solutions form low-
dimensional linear spaces from which minimal velocity sets are identified for the degrees of precision that are
most relevant to the construction of high-order LBGK models. All well-known LBGK lattices are found to be
special cases of the given general solutions.
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I. INTRODUCTION

As the statistical mechanical foundation of thermohydro-
dynamic equations, the Boltzmann kinetic equation describes
the physics of fluids at a more fundamental level and applies
in a wider domain. Despite the tremendous growth of com-
puting power in recent years, direct simulation of the kinetic
equation remains too cost prohibitive for most engineering
applications. Discrete-velocity kinetic models �1� have been
sought after where the entire three-dimensional �3D� velocity
space is approximated by a small number of discrete veloci-
ties. The lattice Boltzmann �LB� method �2,3�, although his-
torically derived from the lattice gas cellular automaton, has
also been shown to be a special velocity-space discretization
of the Boltzmann-BGK equation �4�. For this class of models
to be successful, the macroscopic behavior of the kinetic
equation must be preserved by the discretization of the ve-
locity space. It has been shown that the macroscopic behav-
ior of the lattice Bhatanagar-Gross-Krook �LBGK� equation
well approximates that of the continuum Boltzmann-BGK
equation provided that the discrete velocities form a Gauss-
Hermite quadrature in the velocity space with a sufficient
degree of precision �5�. Once space and time are also dis-
cretized, the discrete velocities effectively define the lattice
of the LBGK model. In the discussion hereinafter, we shall
use lattice and discrete velocities indistinguishably.

The standard LBGK models �6,7� employ lattices that are
only accurate for restoring the Navier-Stokes momentum
equation at the near-incompressible limit. Recently more ac-
curate lattices are found to be critical in recovering higher-
order hydrodynamics such as the energy equation �8,9�,
the Galilean invariance of the transport coefficients �10�,
and the behaviors beyond the Navier-Stokes order �11–14�.
In one dimension �1D�, the Gauss-Hermite quadrature
are established by the fundamental theorem of Gauss quadra-
ture. However, no general solutions are known in higher di-
mensions except for the “product” formulas which are con-
structed as the tensor product of 1D formulas and often
use much larger velocity sets than necessary. Using various

techniques, many quadratures with smaller velocity sets were
obtained case by case �15�, For the low dimension and de-
gree of precision relevant to the construction of LBGK mod-
els, those specially obtained quadratures are believed to be
minimal. However, the special quadratures usually have ab-
scissas not coincide with regular lattices, making them less
desirable choices in LBGK models for both accuracy and
efficiency reasons.

It was pointed out previously �5,8,16� that quadratures
with predefined Cartesian abscissas can be obtained exhaus-
tively by solving the orthogonality relations. Based on the
entropy construction �17� and factorization of symmetry,
Chikatamarla and Karlin suggested another approach
�18–20� in which the higher-dimensional product velocity
sets are pruned to smaller sets while preserving the essential
hydrodynamic moments. More recently, it was also noticed
that the same condition pertaining to discrete-velocity sets
can be obtained using symmetry arguments �21�. Although a
number of high-order lattices are obtained using the different
approaches and found to be very effective in extending the
application domain of the LB method, the comprehensive-
ness and minimality of those lattices have not been estab-
lished in general, neither are the connections among the dif-
ferent approaches identified.

Aiming at these remaining issues, in this paper, we give
the general solutions of Cartesian lattices using the previ-
ously defined quadrature approach �5�. We first outline the
relation between the degree of precision of a quadrature and
the order of accuracy of the corresponding LBGK model,
defined as the order of the highest moments of which the
dynamics are accurately captured. Quadratures with Carte-
sian abscissas are then solved from the necessary and suffi-
cient conditions for the leading moments of the distribution
function to be exactly representable by the discrete veloci-
ties. The general solutions of lattices are found to form linear
subspaces in the parameter space of the quadrature weights.
The minimal velocity sets required for each order of accu-
racy are found by keeping the least populous symmetry
groups. When positivity of the quadrature weights are re-
quired for the purpose of constructing numerically stable
LBGK models, the problem of finding the minimum LBGK
lattice is reduced to a problem of linear programming. We
also compare some well-known LBGK lattices with the gen-
eral solutions obtained.*xiaowen@exa.com
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II. QUADRATURES AND HYDRODYNAMICS

Our discussion starts with the continuum Boltzmann-
BGK equation. Following the previous nondimensionaliza-
tion convention �5�, it can be written as

� f

�t
+ � · �f = −

1

�
�f − f �0�� , �1�

where f = f�x ,� , t� is the single-particle distribution function
in the phase space �x ,� , t�; x, �, and t are the spatial coordi-
nate, microscopic velocity and time respectively, � the relax-
ation time, and f �eq� the Maxwell-Boltzmann distribution,

f �0� =
�

�2���D/2exp�−
�u − ��2

2�
� . �2�

where �, u, and � are the nondimensional hydrodynamic
variables of density, velocity and temperature.

Choosing the Hermite polynomials �22� as the expansion
basis, solving Eqs. �1� and �2� calls for projecting them into
the Hilbert space spanned by the leading Hermite polynomi-
als �5�, e.g., the single-particle distribution f is approximated
by a finite Hermite series,

f � fN 	 ����

n=0

N
1

n!
a�n��x,t�H�n���� , �3�

where H�n���� is the nth Hermite polynomial, a�n� the expan-
sion coefficient, and ���� the weight function:

���� =
1

�2��D/2e−�2/2. �4�

Essentially two facts allow Eq. �1� to be discretized in veloc-
ity space to give the LBGK equations. First, when Chapman-
Enskog calculation is carried out on Eq. �1�, only the
leading-order moments of f appear in the hydrodynamic
equations. The order of the highest relevant moment is de-
termined by the physics of interest and the order of hydro-
dynamic approximation �5�. For instance, the momentum
flux and heat flux are respectively the second and third mo-
ments of the distribution function. At the first �Navier-
Stokes� hydrodynamic approximation, moments up to one
order higher, e.g., third and fourth moments, are needed so
that the transport of momentum and heat in the discrete-
velocity kinetic equation is the same as that in the continuum
version. Second, for distributions of the form of Eq. �3�, the
moments are given by the discrete values of the distribution
function via the Gauss-Hermite quadratures. Let ��wi ,�i� : i
=1, . . . ,d� be the pairs of weight and abscissa of a quadrature
such that for any polynomial p��� of an order not exceeding
Q, we have

 ����p���d� = 

i=1

d

wip��i� , �5�

where Q is known as the degree of precision of the quadra-
ture. Let M be the order of the highest relevant moments and

�M the tensor product of � by itself for M times. Obviously
the expansion must retain all relevant moments, i.e., N�M.
Since fN����M /���� is a polynomial of an order not exceed-
ing M +N, as long as M +N	Q, we have

 fN�Md� = 

i=1

d
wif

N��i��i
M

���i�
. �6�

The conditions for the discrete-velocity kinetic equation to
recover the correct hydrodynamics are therefore �10�

N � M and M + N 	 Q , �7�

which is to be compared with the similar condition given by
Chikatamarlar and Karlin �19�. In standard LBGK models,
Q=5 and M =2 out of the minimum requirement of recover-
ing the Navier-Stokes momentum equation. The truncation
order is either two or three with the former being the stan-
dard in almost all implementations. With a higher-order lat-
tice, the truncation order is allowed to vary more indepen-
dent of the quadrature order.

We notice that since all polynomials of orders not exceed-
ing N form a linear space, say PN. Equation �5� is true for
any p�PN if and only if it is true for a set of basis of PN.
Since the Hermite polynomials form a basis of PN, letting
p=H�n� and carrying out the integrals on the left-hand side of
Eq. �5�, the weights of a degree-N quadrature, wi, can be
solved from the following equations:



i=1

d

wiH�n���i� = �1 n = 0

0 n � 0
�, ∀ n 	 Q . �8�

Equation �8� is the necessary and sufficient condition for any
set of abscissas and their associated weights to form a Her-
mite quadrature whether the abscissas fall on a Cartesian grid
or not. For any predefined abscissas, including the particu-
larly interesting class that form Bravias lattices, the corre-
sponding weights can be explicitly solved from Eq. �8� �5�.
For LBGK computation, it is highly desirable to have lattices
with minimal number of smallest velocities, yet with highest
degree of precision. To obtain such lattices, we consider the
vectors in a size-m Cartesian gird, i.e., �i=cei, where c is the
lattice constant, and �ei� all vectors with integer components
in the range of �−m ,m�. The number of all such vectors is
d= �2m+1�D, where D is the dimensionality. For symmetry
reasons, all weights in the same symmetry group must be the
same. On substituting �i=cei into Eq. �8�, we obtain a set of
linear equations about the weights with the coefficients being
polynomials in c. The number of equations is determined by
Q and the number of variables by the size of the lattice m.
Depending on these two numbers and the value of the lattice
constant, Eq. �8� may or may not have a solution. For a
degree of precision up to 9, which recovers moments up to
the fourth order, we were able to find solutions within m
=3 lattice. When solutions do exist, they are found to form a
linear space in the parameter space spanned by the weight
vector. We shall discuss the details of the solutions in the
following sections.
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III. TWO-DIMENSIONAL LATTICES

In Table I the vectors and the symmetry groups are listed
up to m=3. In the two-dimensional �2D� case, there are ten
symmetry groups and therefore ten weights. Define the vec-

tor w̄= �w1 , ¯ ,w10�. Substituting the vectors in Table I into
Eq. �8� up to Q=8, a set of linear equations in the form of

Mw̄T = �1,0, . . . ,0�T �9�

are obtained, where the matrix M is given in the following:

�
1 4 4 4 8 4 4 8 8 4

− 1 2c2 − 4 4c2 − 4 8c2 − 4 4�5c2 − 2� 4�4c2 − 1� 18c2 − 4 8�5c2 − 1� 4�13c2 − 2� 4�9c2 − 1�
0 − 1 2c2 − 2 − 4 2�8c2 − 5� 8�4c2 − 1� − 9 4�9c2 − 5� 2�72c2 − 13� 18�9c2 − 1�
0 0 c2 − 3 6 4�2c2 − 3� 4�4c2 − 9� 36 18�c2 + 1� 12�6c2 − 11� 9�9c2 − 19�
0 0 − 1 4c2 2�c2 − 4� − 16�c2 + 1� 54c2 18�4c2 − 1� − 82c2 − 72 − 81 − 216c2

0 0 0 − 1 2�c2 − 1� 2�4c2 − 1� − 6 12�c2 − 1� 66c2 − 14 12�9c2 − 1�
0 0 0 0 c2 − 3 4�4c2 − 3� 0 6�c2 − 3� 3�59c2 − 33� 162�3c2 − 1�
0 0 0 0 114 2A 0 B 2C 27D

0 0 0 0 0 0 − 1 2�c2 − 1� 2�4c2 − 1� 2�9c2 − 1�

� �10�

where

A = 228 + 507c2 − 741c4 + 103c6 − 4c8 �11a�

B = 684 − 2415c2 + 1470c4 − 140c6 + 5c8 �11b�

C = 1881 + 1254c2 − 5952c4 + 956c6 − 38c8 �11c�

D = 228 + 547c2 − 1486c4 + 228c6 − 9c8. �11d�

Note that first, due to the symmetry of the lattice vectors, Eq.
�8� is automatically satisfied at all odd orders. Second, in Eq.
�10� there are nine equations for the eleven variables,
w1 , . . . ,w10 and the lattice constant c. Specifically, the first

equation is from Eq. �8� at n=0; the second equation is by
n=2; the third and fourth by n=4; the fifth and sixth by n
=6; and the seventh, eighth and ninth by n=8. Therefore,
solutions of the first four equations give fifth degree quadra-
tures, the one employed by the standard LBGK. Solutions of
the first six equations give seventh degree quadratures and
solutions of all nine equations give ninth degree quadratures.

At the lowest order, the first four equations define the
fifth-order quadratures in the athermal LB models with ap-
proximate Galilean invariance �10�. If only the m=1 lattices
are allowed, i.e., wi=0 for i=4, . . . ,10, only the upper-left
4
3 submatrix needs to be considered, and the only pos-
sible solution is c2=3 and w1=4 /9, w2=1 /9, and w3=1 /36,
which is the classic D2Q9 model.

At the next order, the general solutions of seventh-order
quadratures are given by the first six equations in Eq. �9�

w1 = 1 −
7

3c6 +
23

6c4 −
49

18c2 + 36w6 + 80w8 + 512w9 + 976w10

�12a�

w2 =
19

16c6 −
77

48c4 +
3

4c2 − 24w6 − 50w8 − 318w9 − 594w10

�12b�

w3 =
5c2 − 6

12c6 + 16w6 + 30w8 + 192w9 + 351w10 �12c�

w4 =
− 1

4c6 +
7

24c4 −
3

40c2 + 6w6 + 12w8 + 64w9 + 108w10

�12d�

TABLE I. Two-dimensional lattice and quadrature. For each
symmetry group, a typical lattice vector and the number of vectors
in the group, p, are given. Groups of different sizes �m=0,1 ,2 ,3�
are listed in separate sections. Following the previous naming con-
vention �5�, each quadrature is named with its dimensionality D, the
degree of precision, N, and the number of points, d, as ED,N

d .

Group Vector p E2,7
17 c2= �5��10� /3

1 �0,0� 1 2�95�4�10� /405

2 �0,1� 4 3�−5�4�10� /200

3 �1,1� 4 3�50�13�10� /800

4 �0,2� 4

5 �1,2� 8

6 �2,2� 4

7 �0,3� 4 295�92�10 /16200

8 �1,3� 8

9 �2,3� 8

10 �3,3� 4 130�41�10 /64800
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w5 =
3 − c2

48c6 − 4w6 − 6w8 − 33w9 − 54w10 �12e�

w7 =
4c4 − 15c2 + 15

720c6 − 2�w8 + w9 + w10� . �12f�

A few observations can be made. First, it is immediately
clear from Eq. �12f� that there is no seventh degree lattice
within m=2 because 4c4−15c2+15 is positive definite for
any real c so that w7, w8, w9, and w10 cannot all be zero
together.

Second, Eq. �12�, which contain infinite number of solu-
tions, has the structure of a four-dimensional linear space.
Namely, the weight vector can be written as

w̄ = w̄0 + �̄W , �13�

where w̄0 is a particular solution, W a 4
10 matrix, and �̄
= ��1 , . . . ,�4� an arbitrary vector. We can therefore eliminate
any four groups and still have a solution for any arbitrary
lattice constant. The lattice constant could be further chosen
so that one of the remaining six weights is zero, leaving the
total number of nonzero weights to 5. Thus, a seventh degree
quadrature must include at least five of the symmetry groups.
Choosing the five least populous groups, i.e., group 1 with
any four of the six groups with four velocities, the minimal
number of velocities is therefore 1+4
4=17. The E2,7

17

quadrature in Ref. �5�, which is also given as the D2V17
model in Ref. �8�, is such an example. The two D2V25 lat-
tices given in the same work employ more velocities while
having the same degree of precision as quadratures.

Third, restricting the velocities to those with components
�0, �1, �3�, we have the D2Q25ZOT �zero-one-three� lat-
tice �19� which requires w4=w5=w6=w9=0. From the new
constraints w4=w5=0, we have 3c4−10c2+5=0, or c2

= �5��10� /3, and

w8 + 9w10 =
3 − c2

288c6 . �14�

We are left with one free parameter and the weights of the
D2Q25ZOT form a 1D linear space. Using the extra degree
of freedom to eliminate the most populous group 8, we have
a pair of 17-velocity ZOT quadratures which are also mini-
mal. The weights and the corresponding lattice constants are
shown in Table I. Note that the weights are all positive only
if the upper sign is taken.

Finally we note that solutions with negative weights result
in negative components in the distribution function. This is
undesirable because it not only contradicts with the conven-
tional probabilistic definition of the distribution function, but
also cause numerical instabilities in simulations �cf., e.g.,
�23��. With the positivity constrain, the problem of finding
the minimal quadrature formally reduces to a problem of
Linear Programming of finding the vector w̄ which minimize
the number of points under equality constrain �12� and the
inequality constrains wi�0.

All 9th order quadratures within m=3 are given by solv-
ing the entire Eq. �9� for the eleven variables. It is found that
the only real positive solution for the lattice constant c is

c =
1

6
�49 −

119 + �469 + 252�30�2/3

�469 + 252�30�1/3 � 1.196 98.

�15�

Under this condition, Eq. �9� reduces to �24�

�
w1

w2

w3

w4

w5

w6

w7

w8

� + �
240 1040

− 170 − 720

120 495

56 216

− 39 − 144

12 36

− 6 − 16

4 9

� � w9

w10
� = �

0.233 15

0.107 30

0.057 66

0.014 20

0.005 35

0.001 01

0.000 24

0.000 28

� , �16�

which defines a two-dimensional subspace in a ten-
dimensional linear space. By eliminating any two of the
three most populous groups 5, 8, and 9, we obtain three
33-velocity quadratures which all have some negative
weights. The all-positive ninth-order 37-point quadrature
D2V37 in Ref. �8� is therefore minimal within m=3.

IV. THREE-DIMENSIONAL LATTICES

The same principle applies in 3D with slightly different
results. Given in Table II are all lattice vectors within m=3.
Note there are 20 symmetry groups in 3D. On substituting
the vectors into Eq. �8�, 11 linear equations of the form of
Eq. �9� are obtained. As the full detail of the matrix is too
lengthy to be given here, we shall discuss the solutions in
separate cases below.

For the fifth-order quadrature �Q=5 in Eq. �8��, there are
four independent equations. On restricting the lattice to m
=1, i.e., setting wi=0 for i=5, ¯ ,20, and after some ma-
nipulations, they are

�
1 6 12 8

0 2c2 8c2 8c2

0 c2 − 3 4�c2 − 3� 4�c2 − 3�
0 − 1 2�c2 − 2� 4�c2 − 1�

��
w1

w2

w3

w4

� = �
1

1

0

0
� . �17�

It is easy to see that if and only if c2=3, the equations above
have the solution,

w1 =
1

3
− 8w4 �18a�

w2 =
1

18
+ 4w4 �18b�

w3 =
1

36
− 2w4, �18c�

of which the well-known D3Q15, D3Q19 and D3Q27 lat-
tices are all special cases.

For the seventh-order quadratures, there are seven equa-
tions in Eq. �9�. The general solution is
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w1 = 1 −
27

4c6 +
8

c4 −
49

12c2 + 108w7 + 72w8 + 576w9 + 720w10

+ 240w12 + 1536w13 + 2928w14 + 672w15 + 5232w16

+ 8256w17 + 6720w18 + 166 80w19 + 116 80w20 �19a�

w2 =
41

16c6 −
115

48c4 +
3

4c2 − 4�12w7 + 10w8 + 71w9 + 88w10

+ 25w12 + 159w13 + 297w14 + 75w15 + 582w16 + 886w17

+ 774w18 + 1884w19 + 1323w20� �19b�

w3 =
− 3

4c6 +
5

12c4 + 16w7 + 22w8 + 128w9 + 160w10 + 30w12

+ 192w13 + 351w14 + 112w15 + 876w16 + 1248w17

+ 1280w18 + 3030w19 + 2160w20 �19c�

w4 =
1

8c6 − 12w8 − 48w9 − 64w10 − 27w15 − 216w16 − 243w17

− 432w18 − 972w19 − 729w20 �19d�

w5 =
− 3

8c6 +
1

3c4 −
3

40c2 + 4�3w7 + w8 + 8w9 + 7w10 + 6w12

+ 32w13 + 54w14 + 12w15 + 78w16 + 120w17 + 72w18

+ 173w19 + 108w20� �19e�

w6 =
c2 − 3

48c6 − �4w7 + 2w8 + 10w9 + 8w10 + 6w12 + 33w13

+ 54w14 + 12w15 + 80w16 + 120w17 + 74w18 + 174w19

+ 108w20� �19f�

w11 =
4c4 − 15c2 + 15

720c6 − 4�w12 + w13 + w14 + w15 + 2w16

+ 2w17 + w18 + 2w19 + w20� �19g�

It is immediately clear that no solution exists within m=2 as
it would require wi=0 for i=11, ¯ ,20, which contradicts
with the last equation.

Parallel to the discussion in 2D, the general solutions
above form a 13-dimensional linear space. Using the extra
degree of freedom of c, fourteen of the twenty weights could
be zero. Therefore, a seventh-order quadrature must include
at least six of the symmetry groups in Table II. The total
population of the six least populous groups defines the lower
bound on the number of velocities. Unfortunately setting the
corresponding weights to zero in Eq. �19� results in a con-
flict, which implies that at least one of the groups with
twelve velocities has to be included. Therefore the 39-point
quadrature E3,7

39 of Ref. �5� is minimal. As a comparison, the
D3V59 lattice �16� uses more and larger velocities while
having the same degree of precision as a quadrature.

The three-dimensional ZOT lattices �19� can be easily
verified as a special case of Eq. �19�. Setting wi=0 in Eq.
�19� for i� �5–10,13,16,18,19�, the conditions w5=w6=0
yield 3c4−10c2+5=0, or c2= �5��10� /3, and

w12 + 9w14 + 2w15 + 20w17 + 18w20 =
3 − c2

288c6 �20�

where the two values of c correspond to the “higher-T0” and
the “lower-T0” versions of the ZOT lattice. The weights form
a four-dimensional linear space. After eliminating four most
populous groups, i.e., groups 12, 14, 15, and 17, we arrive at
the two D3Q41 lattices which are the minimal ZOT lattices
but unlike in 2D, not minimal overall.

The ninth-order quadratures are given by the entire set of
eleven equations. Similar to the 2D situation, Eq. �9� has
solution if and only if c takes the value given by Eq. �15�. In
that case, the solutions form a ten-dimensional subspace of
the 20-dimensional linear space,

TABLE II. Three-dimensional lattice and quadratures. For each
symmetry group, a typical lattice vector and the number of vectors
in the group, p, are given. Groups of different sizes �m=0,1 ,2 ,3�
are in separate sections. Following the previous naming convention
�5�, each quadrature is named with its dimensionality D, the degree
of precision, N, and the number of points, d, as ED,N

d .

Group Vector p E3,9
103 c2=1.43276

1 �0,0,0� 1 3.2633
10−2

2 �0,0,1� 6 9.7657
10−2

3 �0,1,1� 12

4 �1,1,1� 8 2.8098
10−2

5 �0,0,2� 6 1.0452
10−3

6 �0,1,2� 24 5.7053
10−3

7 �0,2,2� 12 6.1194
10−4

8 �1,1,2� 24

9 �1,2,2� 24

10 �2,2,2� 8 1.5596
10−4

11 �0,0,3� 6 2.8444
10−4

12 �0,1,3� 24

13 �0,2,3� 24

14 �0,3,3� 12

15 �1,1,3� 24 1.3070
10−4

16 �1,2,3� 48

17 �1,3,3� 24

18 �2,2,3� 24

19 �2,3,3� 24

20 �3,3,3� 8 1.2232
10−6
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�
w1

w2

w3

w4

w5

w6

w7

w8

w11

w12

� + �
216 648 720 3120 240 4512 12 096 10 104 36 864 35 408

− 132 − 384 − 340 − 1440 − 140 − 2464 − 6232 − 5672 − 20 192 − 19 404

80 224 120 495 80 1260 2880 3072 10572 10224

− 48 − 128 0 0 − 45 − 576 − 1053 − 1584 − 5184 − 5103

24 60 112 432 24 480 1296 888 3136 2808

− 14 − 32 − 39 − 144 − 12 − 208 − 504 − 414 − 1392 − 1260

2 2 12 36 0 24 72 26 96 72

8 16 0 0 6 66 108 168 513 486

0 0 − 12 − 32 − 4 − 32 − 72 − 28 − 96 − 68

0 0 4 9 2 10 20 8 26 18

��
w9

w10

w13

w14

w15

w16

w17

w18

w19

w20

� = �
0.208 37

− 0.004 26

0.057 89

− 0.003 98

0.016 97

− 0.002 39

0.001 01

0.003 87

− 0.000 32

0.000 28

� .

�21�

Special cases of the general solution can be found to mini-
mize the number of velocities. However, excluding the
ten most populous groups �those with 24 velocities or more�
causes a conflict. The lower bound on the number of veloci-
ties is therefore 91, the smallest total population when one
group with 24 velocities is included. Lattices of 91 velocities
are indeed obtained but all with some of the weights nega-
tive. All-positive lattices are also obtained using a linear-
programming solver. Of particular interests are the 103-
velocity lattice given in Table II which is the next smallest
velocity set after 91, and the 121-velocity lattice �9,10�, both
of which are two orders more accurate than the ZOT lattices
within the same velocity bound. The existence of 91-velocity
ninth-order quadrature cannot be analytically excluded at this
time. By using velocities from the next level, more ninth-
order lattices can be obtained such as the D3V107 lattice
�16�.

V. DISCUSSIONS AND CONCLUSIONS

Summarizing, we give the general solutions of Cartesian
LBGK lattices in both two and three dimensions with the

focus on the comprehensiveness and minimality of the lat-
tices and the connections among various ways of obtaining
them. The solutions have the mathematical structure of linear
subspaces in the linear space spanned by the quadrature
weights. All the Cartesian LBGK lattices that we are aware
of are special cases of the general solutions with the apparent
exception of the D3Q13 model which is not a BGK type
model �25�. Using the general solutions, lower bounds on the
number of velocities for the seventh- and ninth-order lattices
are established �17 and 37 in 2D, 39 and 91 in 3D� and
minimal or near-minimal lattices are identified in both di-
mensions. The resulting LBGK models are adequate for the
complete recovery of the Navier-Stokes momentum and ther-
mal equations respectively.
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